一二三四在线观看视频韩国 _AV在线亚洲AV 是全亚洲_欧美成人精品视频在线不卡_啊灬啊灬啊灬高潮了视频_野花视频在线观看免费高清版_久久亚洲日韩成人无码导航_18禁黄网站男男禁片免费观看_成年女人18毛片毛片免费不卡_老熟妇仑乱一区二区视頻

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——結論、致謝!

來源:Unisense 瀏覽 1999 次 發布時間:2021-09-13


結論


與對照薄膜相比,印刷薄膜表現出改善的水蒸氣阻隔性能。 Qo 印刷薄膜比混合薄膜更有效。 與對照薄膜相比,印刷的 Qo 薄膜的斷裂伸長率降低,拉伸強度增加,而印刷的混合薄膜的伸長率和拉伸強度均增加。


Th 納米封裝印刷的效率取決于印刷層數、接觸角、添加到分散體中的甘油量和薄膜類型。 兩種薄膜中 Th 的傳遞都在 8 天時完成,表明這些薄膜是傳遞活性化合物的良好平臺。 然而,NQoThs 在薄膜中的分布表現出不同的釋放曲線; Qo 薄膜在第一階段表現出突釋,而混合薄膜表現出較慢的釋放。


與使用 NQos 印刷的薄膜相比,使用 NQoThs 印刷的薄膜對革蘭氏陽性菌(L. innocua 和 S. aureus)和革蘭氏陰性菌(S. typhimurium、E. aerogenes、P. aeruginosa 和 E. coli)表現出更高的 AM和對照膜。 革蘭氏陰性菌(鼠傷寒沙門氏菌、產氣大腸桿菌和大腸桿菌)獲得了最佳結果。


這些發現表明,可印刷納米技術的使用可以改善由可再生生物聚合物制備的薄膜的功能,因為這些薄膜可以提高水蒸氣阻隔性,作為傳遞活性化合物的良好平臺,并增加抗菌活性。 因此,這些薄膜可能有助于開發新的食品包裝材料。


致謝


作者要感謝 INNOVA-CORFO N度 12IDL2-13621 的財政支持。 我們感謝智利圣地亞哥大學的 Fernando Osorio 博士和 Ricardo Andrade 博士對接觸角測量的幫助。 我們還要感謝 Conicyt 授予 Nelson Caro 的博士獎學金。


參考



Abdollahi, M., Rezaei, M., & Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111(2), 343e350.


Abugoch, L. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In Advances in food and nutrition (Vol. 58, pp. 1e31). Elsevier INC.


Abugoch, L., Romero, N., Tapia, C., Rivera, M., & Silva, J. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium Quinoa Willd.) protein isolates. Journal of Agricultural and Food Chemistry, 56(12), 4745e4750.


Abugoch, L., Tapia, C., Villaman, M., Yazdani-Pedraman, M., & Díaz-Dosque, M. (2011). Characterization of quinoa protein chitosan blend edible films. Food Hydrocolloids, 25, 879e886.


Adame, D., & Beall, G. W. (2009). Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42, 545e552.


Akbari, B., Pirhadi, M., & Zandrahim, M. (2011). Particle size characterization of nanoparticles: a practical approach. Iranian Jorurnal of Material Science and Engineering, 8(2), 48e56.


Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493e496.


Berger, J., Reist, M., Mayer, J., Felt, O., Peppas, N., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57, 19e34.


Bharadwaj, R. K. (2001). Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 34(26), 9189e9192.


Bouten, P., Zonjee, M., Bender, J., Yauw, S., van Goor, H., van Hest, J., et al. (2014). The chemistry of tissue adhesive materials. Progress in Polymer Science, 39(7), 1375e1405.


Bradford, M. (1976). Rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anaytical Biochemistry, 72, 248e254.


Brandsch, J., Mercea, P., Rüter, M., Tosa, V., & Piringer, O. (2002). Migration modeling as a tool for quality assurance of food packaging. Food Additives & Contaminants, 19, 22e41.


Buanz, A., Saunders, M., Basit, A., & Gaisford, S. (2011). Preparation of personalizeddose salbutamol sulphate oral films with thermal ink-jet printing. Pharmaceutical Research, 28(10), 2386e2392.


Butler, B., Vergano, P., Testin, R., Bunn, J., & Wiles, J. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5), 953e955.


Calvo, P., Remu~nan-Lopez, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63, 125e132.


Caner, C., Vergano, P., & Wiles, J. (1998). Chitosan films: mechanical and permeation properties as affected by acid, plasticizer, and storage. Journal of Food Science, 63(6), 1049e1053.


Clapper, J. D., Pearce, M. E., Guymon, C. A., & Salem, A. K. (2008). Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications. Biomacromolecules, 9(4), 1188e1194.


Colla, E., Sobral, P., & Menegalli, F. (2006). Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.


Journal of Agricultural and Food Chemistry, 54, 6645e6653. Cortez, M., Martínez, A., Ezquerra, J., Graciano, A., Rodriguez, F., & Castillo, M. (2010).


Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82, 305e315. Davis, T., Yezek, L., Pinheiro, J., & van Leeuwen, H. (2005). Measurement of Donnan potentials in gels by in situ microelectrode voltammetry. Journal of Electroanalytical Chemistry, 584(2), 100e109.


De Britto, D., & Assis, O. B. G. (2012). Chemical, biochemical, and microbiological aspects of chitosan quaternary salt as active coating on sliced apples. Revista Espa~nola de Ciencia Y Tecnología de Alimento, 32(3), 599e605.


De Moura, M., Aouada, F., Avena-Bustillos, R., McHugh, T., Krochta, J., & Mattoso, L. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448e453.


Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C., & Porta, R. (2011). Chitosan/ whey protein film as active coating to extend Ricotta cheese shelf-life. Lebensmittel- Wissenschaft Und-Technologie, 44(10), 2324e2327.


Du, W.-L., Niu, S.-S., Xu, Y.-L., Xu, Z.-R., & Fan, C.-L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75(3), 385e389.


Dutta, P., Tripathi, S., Mehrotra, G., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173e1182.


Ely, D., Garcia, R. E., & Thommes, M. (2014). OstwaldeFreundlich diffusion-limited dissolution kinetics of nanoparticles. Powder Technology, 257, 120e123. Falguera, V., Quintero, J., Jimenez, A., Mu~noz, J., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22, 292e303. Fan, J.-M., Ma,W., Liu, G.-Q., Yin, S.-W., Tang, C.-H., & Yang, X.-Q. (2014). Preparation and characterization of kidney bean protein isolate (KPI)-chitosan (CH) composite films prepared by ultrasonic pretreatment. Food Hydrocolloid, 36, 60e69. Fernandes, S., Freire, C., Silvestre, A., Neto, C., Gandini, A., Berglund, L., et al. (2010). Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 81, 394e401. Ferreira, C., Nunes, C., Delgadillo, I., & Lopes-da-Silva, J. A. (2009). Characterization of chitosan-whey protein films at acid pH. Food Research International, 47(7), 807e813. Freudenberg, U., Zimmermann, R., Schmidt, K., Holger Behrens, S., & Werner, C. (2007). Charging and swelling of cellulose films. Journal of Colloid and Interface Science, 309, 360e365. de Gans, B.-J., Duineveld, P., & Schubert, U. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced Materials, 16(3), 203e213. Garsuch, V., & Breitkreutz, J. (2010). Comparative investigations on different polymers for the preparation of fast-dissolving oral films. Journal of Pharmacology and Pharmacotherapeutics, 62(4), 539e545. Genina, N., Janben, M., Breitenbach, A., Breitkreutz, J., & Sandler, N. (2013). Evaluation of different substrates for inkjet printing of rasagiline mesylate. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 1075e1083. Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48, 44e49. Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R. H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of Food and Agriculture, 93(2), 368e374. Goy, R. C., de Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ci^encia e Tecnologia, 19(3), 241e247. Grob, K. (2008). The future of simulants in compliance testing regarding the migration from food contact materials into food. Food Control, 19(3), 263e268. Guarda, A., Rubilar, J., Miltz, J., & Galotto, M. (2011). The antimicrobial activity of microencapsulated thymol and carvacol. International Journal of Food Microbiology, 146(2), 144e150. Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. (2013). Preparation and functional properties of fish gelatinechitosan blend edible films. Food Chemistry, 136(3e4), 1490e1495. Jia, D., Fang, Y., & Yao, K. (2009). Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films. Food and Bioproducts Processing, 87, 7e10. Khan, M. S., Fon, D., Li, X., Tian, J., Forsythe, J., Garnier, G., et al. (2010). Biosurface engineering through ink jet printing. Colloids and Surfaces B: Biointerfaces, 75(2), 441e447. Khan, T. A., Peh, K. K., & Chang, H. S. (2000). Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. Journal of Pharmaceutical Sciences, 3(3), 303e311. Khoee, S., Sattari, A., & Atyabi, F. (2012). Physico-chemical properties investigation of cisplatin loaded polybutyladipate (PBA) nanoparticles prepared by w/o/w. Materials Science and Engineering C, 32(5), 1078e1086. Kipphan, H. (2001). Handbook of print media: Technologies and production methods (pp. 137e141). Springer Science & Business Media. Kong, M., Chen, X., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144, 51e63. Kurek, M., Brachais, C.-H., Nguimjeu, C., Bonnotte, A., Voilley, A., Galic, K., et al. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97(8), 1232e1240. Kurek, M., Galus, S., & Debeaufor, F. (2014). Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1, 56e67. Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 81(3), 167e249. Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., et al. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 32(6), 1149e1158. Lopez-Leon, T., Ortega-Vinuesa, J., Bastos-Gonzalez, D., & Elaissari, A. (2014). Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: a Hofmeister effect study. Journal of Colloid and Interface Science, 426, 300e307. Majeti, N., & Kumar, R. (2000). A review: chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1e27. McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899e903. Melendez, P., Kane, K., Ashvar, C., Albrecht, M., & Smith, P. (2008). Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. Journal of Pharmaceutical Sciences, 97(7), 2619e2636. Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 47, 3e19. Muzzarelli, R. (1977). Chitin (p. 326). Oxford: Pergamon Press. National Committee for Clinical Laboratory Standards. (1990). Performance standards for antimicrobial disk susceptibility tests. Approved standard M2eA4, forth ed., Villanova, Pa. NCh1151.Of1976. (1999). Laminas y películas plasticas e Determinacion de las propiedades de traccion. NORMA CHILENA OFICIAL (p. 13). NCh2098.Of2000. (2000). Películas de recubrimiento organico e Determinacion de la transmision de vapor de agua. NORMA CHILENA OFICIAL (p. 13). Nelson, D., & Cox, M. (2006). Lehninger principles of biochemistry (4th ed., pp. 75e81). New York: Freeman and Company. Olsson, E., Johansson, C., & J€arnstr€om, L. (2014). Montmorillonite for starch-based barrier dispersion coatingdPart 1: the influence of citric acid and poly(- ethylene glycol) on viscosity and barrier properties. Applied Clay Science, 97e98, 160e166. Pan, K., Chen, H., Davidson, M., & Zhong, Q. (2014). Thymol nanoencapsulated by sodium caseinate: Physical and antilisterial properties. Journal of Agricultural and Food Chemistry, 62(7), 1649e1657. Pardeike, J., Strohmeier, D., Schr€odl, N., Voura, C., Gruber, M., Khinast, J., et al. (2011). Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. International Journal of Pharmaceutics, 420, 93e100. Paseiro-Losada, P., Simal Lozano, J., Abuín, S., Lopez Mahía, P., & Simal Gandara, J. (1993). Kinetics of the hydrolysis of bisphenol A diglycidyl ether (BADGE) in water based food simulants. Implications for legislation on the migration on BADGE-type epoxy resins into foodstuffs. Fresenius' Journal of Analytical Chemistry, 345, 527e532. Pereda, M., Amica, G., & Marcovich, N. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(2), 1318e1325. Pereda, M., Aranguren, M., & Marcovich, N. (2008). Characterization of chitosan/ caseinate films. Journal of Applied Polymer Science, 107(2), 1080e1090. Perez-Gago, M., & Krochta, J. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. Journal of Agricultural Food Chemistry, 49(2), 996e1002. Philo, M., Fordham, P., Damant, A., & Castle, L. (1997). Measurement of styrene oxide in polystyrenes, estimation of migration to foods, and reaction kinetics and products in food simulants. Food and Chemical Toxicology, 35(8), 821e826. Qiu, M., Jiang, H., Ren, G., Huang, J., &Wang, X. (2012). Effect of chitosan coatings on postharvest green asparagus quality. Carbohydrate Polymers, 92(2), 2027e2032. Rabea, E., Badawy, M., Stevens, C., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6),1458e1465. Ramos, M., Jimenez, A., Peltzer, M., & Garrigos, C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513e519. Rinaudo, M., Milas, M., & Le Dung, P. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281e285. Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531e539. Scoutaris, N., Alexander, M. R., Gellert, P. R., & Roberts, C. J. (2011). Inkjet printing as a novel medicine formulation technique. Journal of Controlled Release, 156(2), 179e185. Shi, A.-M., Wang, L.-J., Li, D., & Adhikari, B. (2013). Characterization of starch films containing starch nanoparticles Part 1: physical and mechanical properties. Carbohydrate Polymers, 96(2), 593e601. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84e95. Tapia, C., Montezuma, V., & Yazdani-Pedram, M. (2008). Microencapsulation by spray coagulation of diltiazem HCl in calcium alginate-coated chitosan. AAPS PharmSciTech, 9, 1198e1206. Torres, M., Aimoli, C., Beppu, M., & Frejlich, J. (2005). Chitosan membrane with patterned surface obtained through solution drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1e3), 175e179. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32(3), 235e245. Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein-chitosan-sunflower oil edible film: mechanical, barrier and structural properties. LWT e Food Science and Technology, 50(2), 531e537. Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martínez, C. (2009). Characterization of chitosan-oleic acid composite films. Food Hydrocolloids, 23(2), 536e547. Wazed Ali, S., Rajendran, S., & Joshi, M. (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83(2), 438e446. Wiles, J. L., Vergano, P. J., Barron, F. H., Bunn, J. M., & Testin, R. F. (2000).Water vapor transmission rates and sorption behavior of chitosan films. Journal of Food Science, 65(7), 1175e1179. Yamaguchi, I., Iizuka, S., Osaka, A., Monma, H., & Tanaka, J. (2003). The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1e3), 111e118. Yixiang, X., Xi, R., & Milford, A. H. (2006). Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684e1691. Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosanestarch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering C, 30, 891e897. Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starchechitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84(1), 335e342.




采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——摘要、簡介

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——材料和方法

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——結果與討論

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——結論、致謝!

免费人妻精品一区二区三区| 国产真实老熟女无套内射| 无码专区一ⅤA亚洲V天堂| 日韩人妻无码精品—专区| 人妻AV资源先锋影音AV资源| 人成午夜免费大片| 性中国VODAFONEWIFI| 亚洲成AV 人片在线观看无码| 亚洲成人免费AV| H罩杯大胸爆乳交在线观看| 被窝里的翁憩二十六| 高潮喷奶水在线播放视频| 国产精品国产亚洲精品看不卡| 国产日韩未满十八禁止观看 | 欧美丰满熟妇BBB久久久| 欧美性极品少妇精品网站| 日产一二三区别免费必看| 玩两个丰满老熟女久久网| 无码中文字幕日韩专区| 18禁裸乳无遮挡啪啪无码免费| 99精品视频在线观看免费蜜桃| 啊灬啊灬啊灬快灬高潮了| 大象一区一品精区搬运机器 | 宝宝好大我都握不住了视频 | 亚洲AV永久无码精品放毛片一| 亚洲人成色77777在线观看大| 中文字幕AⅤ人妻一区二区 | 我和亲妺妺乱的性视频| 亚洲国产成人VA在线观看| 中美日韩精品激情无码AV| 国产免费一区二区三区不卡| 久久99精品久久久久久动态图| 蜜桃中文字日产乱幕| 日本体内SHE精高潮| 学生无码AV一区二区三区| GAY欧美猛男巨大FUCKIN| 精品人妻一区二区三区免费| 乱码午夜-极品国产内射| 人妻色欲AV无码专区精油按摩| 舔高中女生奶头内射视频| 69无人区卡一卡二卡| 国产成年无码AⅤ片在线观看| 精品久久综合1区2区3区激情| 色噜噜AV亚洲色一区二区| 亚洲国产精品久久艾草纯爱| 丰满少妇三级全黄| 精品久久久无码中文字幕一丶| 日韩无人区一卡2卡三卡4卡仙| 中文字幕无码专区人妻系列| 高清WINDOWS免费版| 男生把自己的手放到女生的QQ里| 色欲丰满熟妇人妻AV无码| 亚洲国产婷婷六月丁香| HUGEBOOBS熟妇大波霸| 久久精品亚洲精品国产色婷| 人人澡人人妻人人爽少妇 | 国产亚洲欧美日韩在线一区二区三| 久久人妻内射无码一区三区| 日日摸夜夜添夜夜添AV| 亚洲女人天堂成人AV在线| 草草永久地址发布页①| 激情内射亚洲一区二区三区爱妻 | 野花韩国视频免费高清3| 成人午夜福利电影天堂| 精品久久久久久久中文字幕| 无码专区 丝袜美腿 制服师生| 成人综合婷婷国产精品久久蜜臀| 国产精品线在线精品| 免费人成在线观看网站品善网| 亚洲色欲色欲综合网站色偷偷| 成人免费午夜无码视频| 精品人妻少妇一区| 性做久久久久久久| 国产成人无码区免费A∨视频网站 国产成人无码免费视频在线 | 尤物娇妻被NP高H| 国产成人久久久精品二区三区| 人妖CHINESECDTS在线| 99在线精品视频高潮喷吹| 好紧我太爽了视频免费| 全部免费特黄特色大片| 97SE亚洲国产综合自在线不卡| 麻花传媒免费网站在线观看| 午夜理论片免费播放| WBBBB搡BBBB搡BBBB| 精品久久人人做人人爽综合| 亚洲AV无码秘 蜜桃牛牛| 槽溜2021入口一二三四| 人妻少妇无码精品视频区| IPHONE14欧美日韩版本| 人妻少妇 少妇人妻第一页| CHINESE呻吟VIDEOS| 久久久久蜜桃精品成人片公司| 为什么放进去女的就老实了| 国产9 1在线 | 欧洲| 欧产日产国产精品精品| 亚洲情综合五月天| 精品久久久久久无码人妻VR| 亚洲国产欧洲综合997久久| 黄动漫车车好快的车车哔哩哔哩| 亚洲成av人片在线观看| 精产国品一二三产品麻豆| 少妇夜夜春夜夜爽试看视频| 99久久精品美女高潮喷水| 女人被狂躁高潮啊的视频在线看| 99国精产品灬源码1688| 漂亮人妻被黑人久久精品| 又黄又爽又无遮挡免费的网站| 久久这里精品国产99丫E6| 亚洲AV乱码久久精品蜜桃| 国产99久久久国产无需播放器 | 亚洲娇小与黑人巨大video| 精品久久久久久亚洲中文字幕| 亚洲熟妇无码AⅤ在线播放| 久久久噜噜噜久噜久久| 18禁裸乳啪啪无遮裆网站 | 内谢XXXXX8老| 波多野结衣AV黑人在线播放| 色综合久久精品亚洲国产消防 | 一边喘气一边叫疼的视频| 好涨好爽好硬免费视频| 亚洲日韩在线中文字幕综合| 国产手机在线精品| 色既是空在线观看| 国产成人无码一区二区三区在线| 先锋影音人妻啪啪VA资源网站| 肥妇大BBWBBWBBWBBW| 人人超碰人人超级碰国| JAZZJAZZ国产精品| 日韩成人一区二区三区在线观看| 公天天吃我奶躁我的比视频| 小12箩利洗澡无码视频网站| 精品一区二区三区无码视频| 亚洲AV午夜成人片精品| 久久久久久久精品免费老鸭窝| 亚洲精品无码伊人久久| 国产无遮挡又黄又爽高潮| 亚洲日韩一区二区蜜桃AV| 欧美成人综合久久精品| 97国产精华液哪个品牌比较好贵| 人妻少妇偷人精品无码| 国产精品亚洲专区无码蜜芽| 亚洲热妇无码AV在线播放| 内射后入在线观看一区| 夫妇联欢会回不去的夜晚樱花| 亚洲AV无码成人精品区网站| 老熟妇一区二区三区啪啪| 又色又爽又黄18禁美女裸身无遮 | 成人欧美一区二区三区黑人| 午夜亚洲AⅤ无码高潮片苍井空| 久久不见久久见WWW免费| CEKC老妇女CEA0| 无码专区无码专区视频网址| 久青草国产97香蕉在线影院 | 美女脱个精光扒开尿口图片无遮挡| 扒开双腿疯狂进出爽爽爽视频| 人妻无码AⅤ中文字幕日韩| 国产精品一区二区手机在线观看 | 亚洲另类无码专区首页| 朋友的人妻的滋味BD高清中文| 国产美女遭强高潮网站| 岳故意装睡让我挺进去观看 | 久久精品亚洲成在人线AV麻豆| Y1111111少妇影院无码| 日本JAPANESE护士人妻| 国产亚洲美女精品久久久2020| 中国高清WINDOWS视频软件| 男人进入女人里面想动还是不想动| 丰满的继牳3中文字幕系列免费| 亚洲精品乱码久久久久久| 欧洲无码一区二区三区在线观看| 国产乱人伦偷精品视频免下载| 在线观看AV片永久免费| 熟妇人妻系列AV无码一区二区 | 亚洲永久精品wW4791一区| 麻豆国产成人AV在线播放欲色| 福利 无码 三级 视频| 亚洲午夜无码久久久久| 蜜桃女同一区二区免费AV哟| 国产AV一二三无码影片| 亚洲AV日韩精品一区二区三区 | 边做饭边被躁BD苍井空小说| 亚洲精品成人网久久久久久| 欧洲无线一线二线三W955| 狠狠躁天天躁夜夜躁婷婷| 影视AV久久久噜噜噜噜噜三级| 男女久久久国产一区二区三区| XOXOXO性ⅩYY欧美片| 亚洲成人AV在线| 日韩亚洲欧美久久久WWW综合| 久久精品人人做人人爽电影| 动漫精品中文无码卡通动漫| 伊人久久中文字幕| 无码国产精品一区二区VR老人| 加勒比色综合久久久久久久久 | 太多了太满了肚子装不下了| 国内精品乱码卡一卡2卡麻豆| 一二三四视频社区| 无码无套少妇毛多18PX| 欧美老人巨大XXXX做受视频| 国产精品55夜色66夜色|