一二三四在线观看视频韩国 _AV在线亚洲AV 是全亚洲_欧美成人精品视频在线不卡_啊灬啊灬啊灬高潮了视频_野花视频在线观看免费高清版_久久亚洲日韩成人无码导航_18禁黄网站男男禁片免费观看_成年女人18毛片毛片免费不卡_老熟妇仑乱一区二区视頻

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

蛋白質外聚物中多糖的比例——結論、致謝!

來源:上海謂載 瀏覽 2685 次 發布時間:2021-10-12


四、結論


油和/或 Corexit 的存在會導致 EPS 的蛋白質:多糖比率更高,并在中胚層實驗中降低 SFT。 在這些實驗中,SFT 與 蛋白質:具有負斜率的 EPS 多糖。 當開闊的海洋 水域和兩種不同的沿海水處理進行了比較, 蛋白質趨勢:多糖為 CEWAF > DCEWAF > WAF ≥ Control 并且對于 SFT,它是相反的, CEWAF < DCEWAF < WAF ≤ 對照。 因此,SFT 與膠體 EPS 中的蛋白質:多糖比率成反比。


當中宇宙水柱的不同尺寸分數為 相比之下,我們發現 EPS 膠體可以降低 SFT 蛋白質:多糖比例,表明有效的生物乳化 蛋白質的容量。 粒子濾波中 SFT 的比較 分數 (< 0.45 μm) 和 EPS 膠體分數 (< 0.45 μm 和 > 3 kDa),對于真正溶解的部分 (< 3 kDa),它是 表明只有前兩個包含 EPS 的部分具有容量 以降低 SFT,而 < 3 kDa 級分顯示與以下相同的 SFT 純海水或只有真正溶解有機碳的海水。


顯微鏡技術(即 CLSM 和 SEM)證實,正如預測的那樣,蛋白質主要在空氣 - 水界面富集, 強烈影響空氣/水界面處的 SFT 治療。 這些技術還可視化了不同的聚集體尺寸 和它們的分散,以及聚集體形成的重要性 通過陰離子EPS組分部分之間的Ca2+"橋接"。 SFT 可能會發生微小的變化,與蛋白質:多糖比率的變化相吻合,這可能是 pH 值變化的原因(十分之一) 單位),如 EPS 模型化合物所示,這可能在 CMC 周圍最為突出。 此外,我們表明蛋白質和酸性多糖的 EPS 模型成分比 Corexit 導致海水中膠束的自組裝甚至 當這些成分的濃度很低時。 這個 表明 EPS 在形成方面與 Corexit 相同或更有效 乳液。 然而,關于相互作用的更系統的研究 不同組件的不同組合,以及更多型號 單獨的化合物,可能需要更多地闡明在我們的中宇宙實驗中觀察到的復雜性。


致謝


這項研究得到了墨西哥灣的資助 支持名為 ADDOMEx 的聯盟研究的研究計劃 (微生物對分散劑和油的聚集和降解 Exopolymers) 聯盟。 原始數據可以在海灣找到 墨西哥研究倡議信息和數據合作組織 (GRIIDC) 在網址 https://doi.org/10.7266/N7PK0D64; https://doi.org/10。 7266/N78P5XZD; https://doi.org/10.7266/N74X568X; https://doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. https://doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. https://doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. https://doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. https://doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. https://doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. https://doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. https://doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. https://doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. https://doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, https://doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. https://doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. https:// doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. https://doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. https://doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. https://doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. https://doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. https://doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. https://doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. https://doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. https://doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. https://doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. https://doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. https://doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. http://www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. https://doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. https://doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. https://doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. https://doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. https://doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. https://doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. https://doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. https://doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. https://doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. https:// doi.org/10.3389/fmicb.2017.02369.



蛋白質外聚物中多糖的比例——摘要、簡介

蛋白質外聚物中多糖的比例——方法

蛋白質外聚物中多糖的比例——結果與討論

蛋白質外聚物中多糖的比例——結論、致謝!

久久久久无码精品国产AV蜜桃1| 一出一进一爽一粗一大视频免费的| 久久无码国产专区精品| 亚洲乱码日产精品一二三| 日本不卡在线视频二区三区| 久别的草原在线看视频免费| 久久无码人妻一区二区三区 | 大黑大巴大战欧洲美女图片| 中国VIDEOSEX高潮对白H| 肥老熟妇伦子伦456视频| 吃花核心舌头在里面旋转| 成人区人妻精品一区二区不卡网站| 亚洲国产成人久久综合| 97免费人妻在线视频| 最新国产AV无码专区亚洲AVY| 成熟丰满熟妇高潮XXXX| 亚洲精品乱码久久久久久中文字幕| 色777狠狠狠综合| 日产无人区一线二线三线最新版| 免费无遮挡很爽很污很黄的网站| 国产成人A在线观看视频免费 | 亚洲AV成人一区二区三区在线播| 国内大量揄拍人妻在线视频| 色欲av蜜臀一区二区四区 | 潮喷大喷水系列无码久久精品| 69国产成人精品午夜福中文| 精品久久久久久无码中文字幕一区| 久久久G0G0午夜无码精品| 日本一卡二卡四卡无卡国产| 亚洲日本一本DVD高清| JLZZJLZZ全部女高潮| JAPANESE熟睡侵犯| 国产欧美日韩专区发布| 久久婷婷五月综合色俺也想去| 色窝窝无码一区二区三区色欲| 无码国产成人久久| 熟女性饥渴一区二区三区| 十八禁乳露裸体奶头WWW网站| 精品久久久久久久中文字幕 | 亚洲AV无码专区亚洲AV手机版| 日韩人妻OL丝袜AV一二区| 日本大乳高潮视频在线观看| 老妇饥渴XXHDⅩXXOOO| 国产亚洲精品一区在线播放| 人妻丰满熟妇AV无码区免| 国产V亚洲V天堂A无码久久蜜桃| 久久久久亚洲AV无码观看| 窝窝人体色WWW聚色窝魅惑| 午夜精品久久久久久不卡| 亚洲中文久久精品无码| 超碰成人人人做人人爽| 久久久亚洲熟妇熟| 亚洲欧美中文字幕在线一区| 久久天天躁狠狠躁夜夜不卡| 中文字幕无码AV正片AV| 内射人妻无码色AB麻豆| 97超级碰碰碰久久久久| 久久寂寞少妇成人内射| 色噜噜亚洲精品中文字幕| 亚洲日韩精品A∨片无码加勒比| 国产成人亚洲精品另类动态图| 久久亚洲精精品中文字幕| 疯狂做爰XXXⅩ高潮69短| 久久精品国产亚洲不AV麻豆| 妺妺窝人体色WWW在线观看| 欧洲洲一区二区精华液| 无码中文字幕人妻在线一区| 欧美人妻精品一区二区三区| 久久精品无码AV| 无码国产偷倩在线播放| 国产97在线 | 日韩| 东京热人妻系列无码专区| 久久婷婷人人澡人人爽人人喊| 亚洲精品无码AⅤ中文字幕蜜桃| 丰满的继牳3中文字幕系列| 亚洲国产成人BT天堂| 爆乳美女午夜福利视频| 久久无码AV中文出轨人妻| 亚州v不卡ww在线| 暗交拗女一区二区三区| 美女扒开粉嫩尿口的照片| 亚洲国产成人高清在线观看| 伽罗ちゃんが腿法是什么意思| 欧美大屁股XXXX高跟欧美黑人| 亚洲欧美偷拍内射白浆| 国产农村妇女精品一二区| 日韩无码AV一区二区| A级毛片无码兔费真人久久| 久久一日本道色综合久久| 亚洲成AV人在线视| 国产精品99久久精品| 日韩欧美成人免费观看| 99国产精品久久99久久久| 久久人人做人人爽人人AV | 日韩 无码 偷拍 中文字幕| 伊人久久大香线蕉AV一区| 极品少妇被黑人白浆直流| 无码人妻斩一区二区三区| 丰满少妇XXXⅩBBBB视频| 人妻出轨无码AV| AⅤ日本亚洲欧洲免费| 美女内射无套日韩免费播放| 亚洲最大AV无码网站| 超碰CAOPROM 永久地址发| 女的被弄到高潮娇喘喷水视频 | 玩弄人妻少妇老师美妇厨房| 东北老女人高潮大喊舒服死了| 人伦片无码中文字| WWW国产无套内射COM| 欧美乱码卡1卡2卡三卡四卡 | 农民人伦一区二区三区| 1688.COM成品网站入口| 国产精品久久久久久久久免费蜜桃| 久久久久久久久蜜桃| 亚洲国产精品热久久| 国语自产少妇精品视频蜜桃| 日本WV一本一道久久香蕉| VIDEOS性饥渴| 秋霞在线看片无码免费| JIZZJIZZ丝袜老师| 人妻AV一区二区三区| 扒开两腿中间缝流白浆在线看| 欧美日韩一区二区综合| 亚洲精品无码永久在线观看你懂的| 国产午夜精品免费一区二区三区 | 国产成人亚洲综合网站小说| 四季亚洲AV无码一区在线观看| 放荡爆乳女教师电影在线观看| 色窝窝无码一区二区三区色欲| 妇女强高潮18ⅩXXX| 色偷一区国产精品| 国产成人年无码AV片在线观看| 挽起裙子跨开双腿坐下去| 国产精品视频YJIZZ| 亚洲AV成人无码网站大全唐人| 海角精产国品一二三区别| 亚洲精品午夜国产VA久久成人| 久久99精品国产麻豆| 伊人久久大香线蕉AV网| 蜜桃色欲AV久久无码精品软件| 97久久香蕉国产线看观看 | WWW.一区二区三区在线 || 日本护士毛茸茸高潮| 顶级大但人文艺术巫| 无码AV不卡一区二区三区| 国产亚洲精品自在久久VR| 亚洲精品无码专区在线在线播放| 久久久国产精品一区二区18禁| 中文字幕人妻无码专区APP| 欧美人与动牲交A免费| 成人夜间av大片免费观看| 我调教同学的放荡麻麻| 狠狠澡人人添人人爽人妻少妇| 亚洲在AV极品无码高清| 免费观看18禁欲无遮挡奶水下 | 国产性一交一乱一伦一色一情| 亚洲精品国偷自产在线| 麻豆国产96在线日韩麻豆| SLEEP强弙VIDE○SHO| 婷婷国产三区四区| 成人污污污WWW网站免费| 天堂√最新版中文在线| 国产无遮挡又黄又爽又色| 亚洲性夜夜综合久久7777| 女性自慰网站免费观看W| 成熟丰满熟妇高潮XXXXX| 校花高潮抽搐冒白浆| 久久人人妻人人爽人人爽| www.五月婷婷.com| 无码人妻丰满熟妇区免费| 九九精品无码专区免费| 99精品国产兔费观看久久| 搡老女人老熟妇HHD| 好爽别插了无码视频| 最新中文字幕AV专区| 上课我穿超短裙被同桌摸出水| 黑人大雞巴XXOO视频| 18禁无遮挡无码国产免费网站| 色婷婷狠狠18禁久久YYY| 狠狠色噜噜狠狠狠7777奇米| 重口老太大和小伙乱| 双腿张开被9个男人调教| 久草玖玖玖爱在线资源| www.性xxxxx| 亚洲AV永久精品无码桃色| 女人18毛片A级女人18水真多| 丰满饱满极品熟妇XXXX| 亚洲欧美成人在线| 人妻无码AⅤ中文字幕| 黑人巨根后入娇小女孩| 99视频精品全部在线观看| 无码中文字幕日韩专区| 免费无遮挡色视频网站| 国产福利一区二区久久| 在线观看日本亚洲一区| 特级做A爰片毛片免费69| 久久午夜无码免费| 公和熄洗澡三级在线观看| 一二三四视频中文字幕在线看 | 国产97色在线 | 日韩|